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ABSTRACT 

If a certain set in R n has the property, that in some unsymmetric norm each 
point in R n has a unique farthest point in this set, then it consists of exactly one 
point. 

Let there be given a finite dimensional real vector space with a norm that 
satisfies all usual conditions except that it need not be symmetric, only homo- 

geneous for multiplication with positive scalars. Suppose that, in the (unsymmetric) 
metric defined by this norm, a certain set has the property that each point in the 
space has a unique farthest point in this set, then we say that the set has unique 
farthest points. We shall prove that the sets with unique farthest points are exactly 
the one point subsets of  the space. Since every one point set is a set with unique 
farthest points, we have only to prove the converse. 

This problem was solved by V. L. Klee [3] for several types of special norms in 
finite dimensional space and also for some infinite dimensional cases under certain 

extra a priori chnditions on the set with unique farthest points. The coveted 
goal is to solve the problem for an infinite dimensional Hilbert space (c.f. Klee, 
loc. cit.). No counterexample is so for known in any normed real linear vector 
space. 

Here we give a proof  of the most general finite dimensional case. We will use 
the apparatus of "convexity calculus" developed by Brondsted, Moreau, Rockafellar 
and others. In the finite dimensional case the notions are essentially due to Fenchel 
[2], except for that of subdifferential, which has appeared later. Furthermore, wo 
will use a result of the author [1], which we refer to as the generalized Straszewics 
theorem. In the find final section we give a more detailed discussion of the relation 
of  our results to Klee's, and also a proof  for the infinite dimensional space Co(W). 

1. Conjugate convex functions and subdifferentials. By a lower semicon- 
tinuous proper convex function we mean a function f on R n, with values in 
R u { + ~ }  and not identically + ~ ,  such that 

f (2x  + (1 - 2)y) ~ Af(x) + (1 - 2)f(y) 

for all x ,y  in R n and 0<2___ 1 f(x)=liminfy_.xf(y) for all x in R n 
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For brevity, we will say simply convex function instead of lower semicontinuous 
proper convex function. Then each convex function f has a conjugate convex 
function f*,  defined by 

(1.1) f*(x)  = sup { ( x , y )  - f ( y ) :  y~  R ~} 

and (f*)* =f .  The set of points in R" where f has a finite value is called the ef- 
fective domain of f and denoted by 

d o m f =  {x: x6  R~,f(x) < oo} 

The subdifferential ~ f  of f is a set valued function defined for each x in d o m f  
by 

(1.2) ~f(x) = (y: f ( z )  > f (x )  + (y ,  z - x )  for all z ~ R ~} 

This relation says, that in the "graph space" 

Rnx R = { ( x , a ) : x e R ~ , a ~ R }  
the set 

(1.3) {(z,a): a = f (x )  + ( y , z  - x )}  

is a supporting hyperplane to the epigraph grf of f, defined by 

grf = {(z, a): z e dom f, a > f(z)} 

Actually, grf is a dosed convex subset of the graph space, and each "non-vertical" 
supporting hyperplane (a hyperplane in R~x R would be called "vertical" if 
its projection onto R n is not all of R n) of grf can be written as (1.3) for some x 
in dom f and y in ~f(x). 

From (1.1) and (1.2) we find that 

(1,4) tgf(x) = {y: f*(y)  = (y ,  x )  - f(x)} 

and from the symmetry of (1.4) it is clear that 

y ~ ~f(x) . ,~x e ~gf*(y.,:,f(x) +f*(y )  = ( y , x )  

Relation (1.4) can also be interpreted as stating: 8f(x)  is the projection onto 
R ~ of the intersection of grf* and its supporting hyperplane 

{(z,a): a = ( z , x )  - f ( x )  =f*(y )  + (z - y, x)),  e.f. (1.3). 

All statements in this section that are not completely evident are proved in 
Fenchel [2]. 

2. The generalized Straszewics theorem. The well known Straszewics 
theorem says that in a compact convex set C in R ", the set of all exposed points 
are dense in the set of all extreme points, a point of C being called exposed if 
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there is a hyperplane H such that H k) C contains this point alone. We say that a 
subset of C is a face of C if it is the intersection of C and some supporting hyper- 
plane. Then a point is exposed if the smallest dimension of any face containing 
it is 0. To state a generalization of Straszewics theorem we define a point (in the 
boundary of C) to be k-exposed if the smallest dimension of any face containing 
it is at most k, and to be k-extreme if the largest dimension of any simplex con- 
tained in C, of which the point is the barycenter, is at most k. The following 
theorem is proved in [1]. For k = 0 it's the old Straszewics theorem. 

THEOREM 1. (Generalized Straszewics theorem): Each k-extreme point oj 
the boundary of a compact convex set is the limit of k-exposed points. 

3. Restatements of  the farthest point problem. We assume that we have in R n 
an "unsymmetric norm",  i.e. a function x ~ II x I1: R n-" R + satisfying 

(3.1) II~xli=~lixll  for 2 > 0  and 

(3,2) B-- {x: Ilxll z 1}is a bounded convex neighborhood of 0 in R*. 

In general, however, II x II ~' II- x tl so one has to be careful with signs. 

Now let S be a set that has unique farthest points with respect to this norm. 
In other words, given any point x in R" we assume that there exists a point q(x) 
in S (the "antiprojection" of x onto S) such that 

q(x) # y e S implies 11Y - x 11 < II q(x) - x 1t 

Also, we will let s denote one point in S, fixed once and for all. The theorem that 
we have set out to prove is the following. 

THEOREM 2. The set S consists of the point s alone. 
The proof will be indirect, assuming the counterhypothesis to Theorem 2 in 

the following version 

(CH) q(x) # x for all x in R n 

I f  (CH) is true then Theorem 2 must be false, since q(q(x)) # q(x) and both are 
in S, whereas if Theorem 2 is true then (CE) is false because q(s) = s. Hence 
another way of stating Theorem 2 is: the antiprojection onto S has a fixpoint. 
It then follows immediately that the antiprojection is a constant. 

Another reformulation of Theorem 2, which will not be used in the proof, is 
the following. Denote by B(x, r) the (unsymmetric) ball with center x and radius r: 

n(x,  r) -- {y : I l Y -  xll Z r) 

Then S = B (x, It ~(x) - x II) and ~ O  bdB(x, II q(x) - ~ II) # ~ together define the 
number IIq(x)-  xll in a way which would make sense for any bounded set S 
even if it did not have unique farthest points, whereas "for  each x in R ~, 
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S n bdB(x, H q(x) - x l[) has exactly one element" expresses this unique farther 
point property. Now 

= {B(x r): x e R", r _>_ 0) 

is exactly the family of all (positive) homothcties of the unit ball B. Suppose 
that ~ were any family of closcd convex scts. Define S to be strictly convex with 
respect to c¢ if S c C for some C eC¢ and 

C e ~ S c C and •n bdC ~ f~ implies that S r3 bdC has exactly one clement 

Since B could have been a translate of any given compact convex body, wc have 

the following reformulation of Theorem 2. 

TrmOREM 2'. I f  the set S is strictly convex with respect to any fami ly  of all 
positive homotheties of some fixed compact convex body, then S consists of  
exactly one point. 

4. Proof of Theorem 2. We introduce the real-valued function g defined by 

g(x) = [1 qCx) - x [[ = sup {11 y - x U: y ~ s }  

The function g is the supremum of the elementary functions x -~ It y - x [I that 
are clearly convex, so g itself is convex in the sense of Section 1. It also satisfies 
the following Lipschitz condition 

(4.1) - II x - y II --< gCx) - gcy) <= II y - x II for all x, y ~ R" 

with equality on either side only if q(x) = q(y). We will denote the polar body 
of the unit ball B by B°: 

B ° = {x: ( x , y )  < 1 foraU y e B }  

-- { x : < x , y > = <  Ilyll for all yeR"}  

We will also define two set-valued mappings D and D* by 

DCx)= {y: ( y , x ) =  1 , y e B  °} for xebdB(i .e . ,  Ilxll = x) 
and 

D*(x) = {y: (x ,  y )  = 1, y e B} for x e bdB* 

These are sometimes called the spherical mappings or duality mappings between 
the boundaries of the unit ball and its polar body. Obviously, D(x) c bdB ° for 
eachx in bdB and D*(x) = bdB for each x in bdB °. We assume (CH), so we may 
define the function b, with values in bdB, by 

q(x) - x 
b(x) = II q ( ~ ) -  xll " 

for all x in R'. Now we will prove the following lemma 
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LEMMA 1. -- O(b(x))c Og(x) 

Proof. Take y in -D(b(x)) .  This means that 

( - y , q ( x ) - x ) = [ ] q ( x ) - x [ [ ,  ( -  y,u)<=i[u[[ for all u in R ~ 

Now compute 

g ( x )  = l[ q<x> - x 11 = U q<x)  - z + <z - x> II = < - y ,  q<x> - ~ + <~ - x>> 

< II q<x> - ~ tl - <y ,  z - x >  __< g<z> - <y ,  z - x >  

Hence 
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g(z) > g(x) + (y, z - x)  for all z in R" 

so that y is also in Og(x), as claimed. 
We go on to interpret ag(x) as the projection onto R n of the intersection of the 

epigraph of  g*, 

grg* = ((z, a): a > g*(z), z ~ doing*} 

and its supporting hyperplane 

{(z, a): a = (z, x )  - g(x)} 

In other words, Og(x) is the projection onto R" of a face of grg*, in the sense of 
Section 2. We want of course to apply the generalized Straszewics theorem to 
grg*. However, this is an unbounded set, so we must find out how to truncate 

it in a good way. 
The following inequalities hold for g: 

Its - x il < g(x) < g(0) + II - x 11 for all x in R" 

From them, we derive the corresponding inequalities for g*: 

-g (O)<g*(x )<  (x , s )  -<_ [ I -s I I  for x in --B ° 

g*(x) = + oo otherwise 

In other words, dom g* = - B °, and in its effective domain, g* assumes values 
b e t w e e n - g ( 0 )  and I I - s i t .  Thus, we may consider grg* to be truncated, by 
adding, say, a < I [ -  s [ l + 2  to the defining relations. We will be interested in 
that part of the boundary of grg* which lies in the open set 

{(z,a): z ~ i n t ( -  B °) a < 11- sll + 1) 

For brevity, we will say simply that a boundary point of grg* is "in int ( - B°) ' ' ,  
when it lies in the above open set. 

As a first application of Straszewics theorem (for this the classical version 
suffices) we show that grg* has no extreme points in int ( - B°). For if it were so, 
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then some boundary point (z,g*(z)) in int ( - B  °) would have to be exposed, 
i.e. possible to separate from the rest of  grg* by some hyperplane with gradient x. 
But then z would be the only dement  of 0g(x), whereas we know by Lemma 1 
that Og(x) contains points in the boundary of - B °. Hence there are no extreme 
points of  grg* in the interior of - B  °. 

Suppose now, inductively, that we have shown that grg* has no (k - 1)-extreme 
points in int ( -  B°), for some k ___< n - 1, and suppose that the point (z, g*(z)) 
with z in int( - B°), were k-exposed. Then there is an x in R" such that z is in 
Og(x) and Og(x) has dimension k. The relative boundary points of  Og(x) are 
( k -  1)-extreme and so they all lie in the boundary of - B  °, by the induction 

hypothesis. Hence actually 

Og(x) = ( - B °) n K 

where K is a k-dimensional affiue subspace of R". By Lemma 1, the intersection 
o f -  B ° and its supporting hyperplane 

H = {y: ( y , b ( x ) )  = - 1} 

which is -D(b (x ) ) ,  is contained in Og(x). Here we need a second lemma. 

LEMMA 2. I f  Z in Og(x) is a boundary point of  - B °, then any hyperplane 
supporting - B ° at z intersects - O(b(x)) = H n ( -  B°). 

Proof. We have by definition that 

< -  z , u > =  Ilull = 1 for all u in D * ( -  z). 

The hyperplane defined by u is the set 

n u  = {y :  ( - y , u >  = 1} 

and to prove Lemma 2 we have to show that H n H u n  ( -  B °) is nonempty. 

Since z is in Og(x), 

( z ,  y )  - g(y) < ( z  x )  - g(x) for all y in R" 

Thus, for y = x - 2u, 2 > 0 we have 

g(x) - g(y) < - ( - z , x  - y )  = - Iltx - y ]l 

so, by (4.1) we have equality, and q(x) = q(y). We will now show that the midpoint 
o f u  and b(x) is in bdB, i.e. ½(u + b(x)) = 1 .  Take 2 =  q ( x ) -  x above. 

Then 1[½(u+b(x)) - = [ q < y ) - y  ]2 
Ilq(x)- ~ = ( l l q ( x )  - + x -  Y )/2 q ( x ) -  x = 1 as asserted. Now let v 
be any element of  D(½(u + b(x)), i.e. v is in B °, and 

l (v ,u + b(x)) = 1 
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Since u and b(x) are both in B, we have that 

(v ,u)  = (v, b(x)) = 1 

Hence the element - v is both in H and H,,  and since it is also in - B °, we have 

completed the proof  of Lemma 2. 
Going back to the proof  of Theorem 2, we see that H n K is a supporting 

hyperplane of Og(x) in K. Since Og(x) is supposed to have interior points relative 

to K, there is in K a hyperplane supporting Og(x) which is parallel to but dif- 
ferent from H. This can then be extended to a hyperplane J supporting - B ° in 
R". But J meets H n ( -  B °) by Lemma 2, so J must contain Og(x), which is 
therefore contained in the boundary of  - B  ° a contradiction. We conclude 

that no point of grg* in int ( -  B °) can be k-exposed. 
Invoking Theorem 1, we now find by induction that no point of  grg* in int 

( -  B °) is (n - 1)-extreme. But that means, that if z is any point in the interior o f  
- B ° and x is in Og*(z), then Og(x) is all of  - B °, since if z is k-extreme in Og(x) 
then (z, g*(z)) is k-extreme in qrq*, for k < n - 1. As in the proof  of Lemma 2 
we have that q(x) = q(y) for every y = x - 2u with 2 > 0 and u in D * ( -  z) for 

some - z in the boundary of  B °, which now coincides with - Og(x). But this 

means that u can be any element of bdB so q(x) = q(y) for all y s R" contra- 
dicting (CH). Thereby the proof  of Theorem 2 becomes complete. 

5. Klee's  results, an infinite dimensional case,  and an open problem. The special 
eases solved by Klee that were mentioned in the introduction are the following 

1. The set S is closed. 
2. The norm is rotund. 
3. The norm is polyhedral, i.e. it is the maximum of a finite family of linear 

functions. 
Each ease has its own proof, and they are all very different from each other 

and from our proof  here, which is closes related to Klee's proof  of Case 3, but 
much more complicated. Klee states and proves Case 1 and 2 for general Banach 
spaces, with the additional assumption that S is compact and totally bounded, 
respectively. Klee does not  extend Case 3 to any infinite dimensional case, but  
it is in fact possible to do so, by means of  the following remark. Let E be a Banach 
space taking the role of R" and let all other notations be as before. We have then 

LEMMA 3. The family {q-~(x): x ~ S} is a cover of E consisting of closed 
sets that are pairwise either disjoint or identical. Hence the family  has either 
all members equal to E or else uncountably many different members. 

Proof.  The closedness of  q-a(x)= {y: q(y)= x} is obvious from the con- 
tinuity of  the norm, and the disjointness or identity between any pair 
q-l(x),  q-~(y) is of  course another way of  stating the uniqueness of  the farthest 

point. Furthermore, the existence of  farthest points on all of  E shows that E is 
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covered by the family. Finally, the uneountability of a nontrivial closed disjoint 
cover of E is proved by reduction to the ease E = R (take the trace of the whole 
configuration on a line contained in E) and there it is an easy consequence of the 
Cantor-Bendixon theorem on uncountability of perfect sets. Namely, the set of 
all interval endpoints of the complements of the closed sets in the family would 
be at the same time countable and perfect, which is impossible. 

From Lemma 3 we got the following theorem. 

TI-~OREM 3. I f  the norm in E is the maximum of a countable family  of linear 
functions (i.e. there is a sequence y, in E* such that, for each x in E, (x,y~) 
<= [I x H for all n and (x, y , )  = ][ x Jl for some n), then each set with unique farthest 
points consists of a single point. 

COROLLARY Each set with unique farthest points in Co(W ) consists of a single 
point. 

Proof. Say that a farthest point q(x) corresponds to the element Yn in E* if 

II q ( x )  - x II = - 

Suppose another farthest point q(z) also corresponds to Yr. From the following 
short computation 

yn> 

we deduce that (q(z), y~) < (q(x), y~), and the converse inequality is obtained 
by letting x and z change places in (5.1) so (q ( z ) , y , )=  (q(x),y~). But then 
substitution into (5.1) shows that we have equality all along in (5.1), which implies 
q(x) = q(z). Thus at most one farthest point corresponds to each y,. It follows 
that {q-l(x): x E S} is countable, hence by Lemma 3 trivial, and this proves 
Theorem 3. 

Thus Klee's results extend in all cases to some infinite dimensional situation 
(note that our Theorem 3 extends Klee's Case 3 in some finite-dimensional cases 
too, but this has already been covered by our Theorem 2) and the extension of 
Case 3 gives the only proof known to the author of a case where S may be a 
priori non-precompact. In contrast to this, our method in the previous sections is 
impossible to extend to infinite dimensional cases, both because of its inductive 
nature and because of its use of the generalized Straszewics theorem. 

The referee has pointed out that Klee's method in Case 1 works also if the 
norm function is replaced by an arbitrary continuous convex function that attains 
its minimum. Let f be such a function. Then 

(5.2) g(x) = sup{f(z - x): z ~ S} = f(q(x) - x) 

together with the hypothesis that for each x there exists a unique such q(x), serves 
to define this analog of the antiprojection function. By translation one may 
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assume that f(0) = 0 < f (x)  for all x. If  S is compact it follows that q is continuous. 
and, as in [3] that it has a fixed point s, with q(s) = s. It then follows from (5.2) 
and the unicity that s is the only point in S. Thus, in particular, the method works 
as well for unsymmetric norms. 

Klee's proof for Case 2, however, uses the homogeneity of the norm and so 
does not work for general convex function, although it will take a generally 
unsymmetric norm. The third case, again, has an appropriate extension to more 
general convex functions. We give here the corresponding generalization of our 
Theorem 3. 

TrmOREM 4. I f  the (continuous) function f is defined on the Banach space E 
as the maximum (attained at each point of E) of a denumerable family of con- 
tinuous affine functions, and f attains its minimum on E, then each subset S of 
E such that (5.2) has a unique so ution q(x)for each x in E (i.e. each translate 
o f f  attains its maximum uniquely on S), consists of a single point. 

The proof of Theorem 4 consists of a repetition of the argumcnts in the proof 
of Theorem 3, and is omitted. 

Again, it seems indicated by the success in Case 1 and Case 3 that the cor- 
responding statement would be true, in finite dimensional spaces, for any contin- 
uous convex function that attains its minimum and for a priori arbitrary sets S. 
We have not been able to solve this and state it as an open problem. 

PROBLEM. Suppose f is a continuous convex function on R n that attains its 
minimum and that S is a subset of R" such that each translate of f attains its 
maximum at a unique point in S. Must S consist of a single point? 

REMARk. Some condition on f like attaining its minimum is needed, as shown 
by taking f to be a nonconstant linear function. 
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